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Here the best fit with theory yields an equili-
brium distribution coefficient of 0-13 for small
amounts of tin in bismuth.

With the viscosity value of liquid bismuth
cited in[1]. the diffusion coefficient of tin in
liquid bismuth at about 275°C is calculated
to be 1:6x107°cm?*sec. Niwa er al.[5]
measured this diffusion coefficient in the
temperature range 450°-600°C. The extra-
polation of their data to 275°C results in a
value of 2-8 X 107 cm?/sec.
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Elastic Griineisen parameters in crystals of low
symmetry*

(Received | November 1968)
THE GRUNEISEN parameters play an impor-

tant role in the theory of anharmonic eftects
in solids, and their properties and behavior

*This work was performed under the auspices of the
United States Atomic Energy Commission.

in cubic crystals have been extensively
investigated[1-5]. Recently, Brugger[6] has
tformulated a generalized scheme of Grun-
eisen mode parameters in crystals of any
symmetry. In the present note, the relations
between the mode Gruneisen parameters
and the pressure derivatives of the elastic
moduli in several crystal classes of lower
symmetry than cubic will be derived. The
results will be applied to some materials where
experimental data are available.

An anisotropic continuum model, neglect-
ing dispersion, will be assumed. In addition,
the discussion will be limited to crystal
structures where the linear thermal expansion
tensor «;; referred to crystalline axes is
diagonal, and the elastic compliance moduli
s;; obey the relation:

s;=0; i=1,2,3; j=4,56. ()

These assumptions limit the treatment to
cubic, tetragonal, hexagonal and ortho-
rhombic crystals.

The general mode Griineisen parameter for

a mode of wave vector q and polarization

index p is defined as[7]:
v =—[0Inw, @)/l J.k=1.2.3 (@)

where 7;; are the Lagrangian strains, w,(q)
the frequency of the mode q. p. Confining the
strain to hysrostatic pressure P, we have the
relation[6]:

[0 Inw,(@)/dP]y=—sT,.[0 Inw,(@/0n;]r 3)
where summation over repeated indices is
implied. In our case, n;= 0 for i # j, and as
aresult of equation (1) we have:

3
[0Inw,(q@)/oP):= I slhyi(q) (4)

=1

the mode gamma tensor being diagonal. Now,
as we neglect dispersion, w,,(¢) is given by:

w,(q) = gs,0, P). AS)
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But,
g (L4 L2+ L2)™ 12 (6)

where L,, L, and L, are the lengths of the
crystal parallel to the x,y and z axes, aad
5,0, ) is the sound velocity for the mode
q.p. Hence, one obtains the relation:

[0 In w,(@)/aP] = (PK,"+ m*K,"+ n*K,")
+[alns,(0,$)/oP], (7)

where K,”, K, and K," are the isothermal
linear compressibilities in the directions of
the crystalline axes. and [lm.n, are the
direction cosines of q. Denoting the elastic
stiffness modulus associated with the mode
g, p by c,, one obtains:

(8 Inw,(Q)/aP) = PK,T+m*K,"+ n*K,"

—0-5K,"+0-5(0 In c,/0P)r
@)

where KT is the isothermal volume com-
pressibility. Thus, we have

3

S sy (q) = FK\T+m*K,"+ n*K,"
i,j=1
' —0-5K,7+0-5(dln ¢,JaP)y.  (9)

Defining now an averaged mode gamma

viw=(Ts) x| Tsor@] ao

iJ= iJ=1

one obtains
Y"(q) = [PK\"+m*K,"+ n’K,;"—0-5K,T

3
+0-5(aln c,,/al’),~]/( b s,,-). (an
i5=1
As can be seen the individual mode gammas
vi’(q) cannot be deduced from the pressure
derivatives of the elastic moduli alone, but
only their weighted average. In order to de-
termine the individual v (q). uniaxial as well
as hysrostatic pressure derivatives of the
clastic moduli are required.
The Griineisen parameter, defined by

Y= ﬁV/<CrU§=lSu) (12)

where g is the volume expansion thermal ex-
pansion coefficient (8= a,+ a,--a3), C the
specific heat at constant volume ' is given
by (7]

g = [ZC,,(q)y"(q)]/[E C,,(q)] (13)

a.p a.

where C,(q) is the specific heat associated
with the mode q.p. The low and high tempera-
ture limits of the Griineisen parameter, 7y,
and y,; may be easily calculated, as at the low
temperature limit C,(q) = ¢,”¥*, while in the
high temperature limit C,(q) = kT. Hence,
in these two limiting cases the sum in equation
(13) may be evaluated in a straight forward
manner.

A computer program for the CDC 3600
computer which evaluates the averaged mode
gammas y”(q). as well as y, and vy, in crystals
of cubic, hexagonal, tetragonal and ortho-
rhombic symmetry has been written. The input
data to the program are the room temperature
elastic moduli, their pressure derivatives,
and the low temperature elastic moduli. The
program computes the sound velocity in any
direction by calculating the eigenvalues of the
Christoftel determinant[8], as well as the
pressure derivatives in any direction. From
the latter quantities the y”(q) as function of
direction are determined. vy, and vy, are
evaluated by numerical quadrature.*

The above program has been applied to
three materials of hexagonal symmetry, where
the values of the elastic moduli and their
pressure derivatives are available, i.e. mag-
nesium|[9. 10], cadmium|[11, 12] and cadmium
sulfide[13, 14]. Since the hexagonal structure
has transverse symmetry, the y”(¢) need only
be evaluated as a function of the latitude
angle 6. The results of the computation are
shown in Figs. 1-3, where p = 1 is the longi-
tudinal mode, p = 2 the fast shear mode, and

*A write-up of the program may be obtained from the
author upon request.
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Fig. 1.y”(q) as a function of ¢ for Mg.
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Fig. 2. ¥*(q) as a function of @ for Cd.
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Fig. 3.9”(q) as a function of 4 for CdS.

Table 1. The values of y, and vy, for Mg, Cd and CdS, us obtained
Sfrom elastic and thermal expansion data

Elastic data Thermal expansion data
" Yu YL Yu
Mg 1-45 1-52 1-40(10°K) [7] 1-50(300°K) [7]
Cd 2-16 2:06 2:-10(20°K) [ 16, 18] 1:86(300°K) [ 16, 18]
Cds —2-19 =119 —2:34(20°K) [15. 18] 0-45(300°K) [15, 18]
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p =73 the slow shear mode. In Table | the
values of y, and vy, as obtained from elastic
data, are compared with the similar quantities
derived from thermal expansion data. As can
be seen, the agreement between the two sets
of data is very good for magnesium and cad-
mium, while in the case of cadmium sulfide,
there are large discrepancies between the
thermal expansion and elastic y,. This is
not surprising, as such discrepancies are
expected when optical phonons contribute
appreciably to the lattice vibration spectrum
[4], which is the case for cadmium sulfide. The
thermal expansion value of y, contains prob-
ably some error, as the values of the low
temperature thermal expansion coefficient
were determined from data of the lattice
parameter as a function of temperature i 5].

It is interesting to note that the negative
thermal expansion coefficient of cadmium at
low temperatures[16, 17] is not reflected in
y?(q) becoming negative. This is probably
due to the dominance of the modes with
positive values of y”(q) in the averaging
process. On the other hand. in the case of
cadmium suifide, the y”(q) for the shear
modes are both negative throughout, as well
as y,. This is in agreement with the fact that
both thermai expansion coefficients of
cadmium sulfide become negative at low
temperatures.
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Antiferromagnetic structures of USb and
UBi*

(Received 28 August 1968 in revised form 1 October
1968)

THE URANIUM compounds with group VA
elements (N. P, As. Sb, and Bi. denoted by 1)
that have the NaCl-type structure are anti-
ferromagnetic. The vaiues of the Néel tem-
perature (7). the paramagnetic Curie
temperature (#), and the paramagnetic
moment (n,) increase along the series from
UN to UBIi. These properties and the high
electrical conductivity were considered in a

tPermanent address: Physics Department, Tel Aviv
University, Ramat Aviv, Israel.
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